Ilmu Pengetahuan Alam adalah ilmu yang
mempelajari tentang segala sesuatu yang ada di sekitar kita secara sistematis.
Para ilmuwan atau scientist mempelajari apa yang terjadi di sekitar kita dengan
melakukan serangkaian penelitian dengan sangat cermat dan hati-hati. Dengan
cara itu, mereka dapat menjelaskan apa dan mengapa sesuatu dapat terjadi, serta
memperkirakan sesuatu yang terjadi saat ini maupun yang akan datang terhadap
alam sekitar.
Hasil-hasil temuan mereka dapat
dimanfaatkan untuk kesejahteraan hidup manusia, seperti komputer, televisi,
biji jagung hibrida, pupuk, dan sebagainya.
Kali ini, kita akan mempelajari apa yang diselidiki dalam IPA, bagaimana melakukan pengamatan, serta mempelajari pengukuran sebagai bagian dari pengamatan. Langkah awal untuk mempelajari benda-benda di sekitar adalah dengan melakukan pengamatan (observasi). Sebagai awal kita bisa mengamati teman atau sahabat kita dan hasil pengamatan terhadap temanmu berupa deskripsi yang disusun tentang teman kamu. Misalnya, tinggi, rambut hitam, kulit cokelat dan agak halus, memiliki denyut, bernapas, dan lain-lain. Dengan hasil pengamatan ini, berbagai pertanyaan lanjutan akan muncul. Pertanyaan-pertanyaan tersebut, misalnya jika dia berlari-lari, apakah cara bernapasnya tetap? Apakah denyutnya juga berubah? Nah, dengan melakukan penyelidikan lanjutan, kamu akan memperoleh pemahaman yang makin lengkap tentang temanmu tersebut. Sebenarnya, dengan cara seperti inilah IPA akan berkembang.
Penyelidikan ilmiah IPA melibatkan sejumlah proses yang harus dikuasai, antara lain seperti berikut:
Pengamatan
Melibatkan pancaindra, termasuk melakukan pengukuran dengan alat ukur yang sesuai. Pengamatan dilakukan untuk mengumpulkan data dan informasi.
Membuat Inferensi
Merumuskan penjelasan berdasarkan pengamatan. Penjelasan ini digunakan untuk menemukan pola-pola atau hubungan-hubungan antar aspek yang diamati, serta membuat prediksi.
Mengomunikasikan
Mengomunikasikan hasil penyelidikan baik lisan maupun tulisan. Hal yang dikomunikasikan termasuk data yang disajikan dalam bentuk tabel, grafik, bagan, dan gambar yang relevan.
Keterampilan melakukan pengamatan dan mencoba menemukan hubungan-hubungan yang diamati secara sistematis sangatlah penting. Dengan keterampilan ini, kita dapat mengetahui bagaimana mengumpulkan fakta dan menghubungkan fakta-fakta untuk membuat suatu penafsiran atau kesimpulan. Keterampilan ini juga merupakan keterampilan belajar sepanjang hayat yang dapat digunakan bukan saja untuk mempelajari berbagai macam ilmu, tetapi juga dapat digunakan dalam kehidupan sehari-hari.
Objek yang dipelajari dalam IPA meliputi seluruh benda di alam dengan segala interaksinya untuk dipelajari pola-pola keteraturannya. Objek tersebut dapat berupa benda yang sangat kecil, misalnya bakteri, virus, bahkan partikel - partikel penyusun atom. Objek yang diamati bisa juga benda-benda yang berukuran sangat besar, misalnya lautan, bumi, matahari, hingga jagat raya ini.
Kali ini, kita akan mempelajari apa yang diselidiki dalam IPA, bagaimana melakukan pengamatan, serta mempelajari pengukuran sebagai bagian dari pengamatan. Langkah awal untuk mempelajari benda-benda di sekitar adalah dengan melakukan pengamatan (observasi). Sebagai awal kita bisa mengamati teman atau sahabat kita dan hasil pengamatan terhadap temanmu berupa deskripsi yang disusun tentang teman kamu. Misalnya, tinggi, rambut hitam, kulit cokelat dan agak halus, memiliki denyut, bernapas, dan lain-lain. Dengan hasil pengamatan ini, berbagai pertanyaan lanjutan akan muncul. Pertanyaan-pertanyaan tersebut, misalnya jika dia berlari-lari, apakah cara bernapasnya tetap? Apakah denyutnya juga berubah? Nah, dengan melakukan penyelidikan lanjutan, kamu akan memperoleh pemahaman yang makin lengkap tentang temanmu tersebut. Sebenarnya, dengan cara seperti inilah IPA akan berkembang.
Penyelidikan ilmiah IPA melibatkan sejumlah proses yang harus dikuasai, antara lain seperti berikut:
Pengamatan
Melibatkan pancaindra, termasuk melakukan pengukuran dengan alat ukur yang sesuai. Pengamatan dilakukan untuk mengumpulkan data dan informasi.
Membuat Inferensi
Merumuskan penjelasan berdasarkan pengamatan. Penjelasan ini digunakan untuk menemukan pola-pola atau hubungan-hubungan antar aspek yang diamati, serta membuat prediksi.
Mengomunikasikan
Mengomunikasikan hasil penyelidikan baik lisan maupun tulisan. Hal yang dikomunikasikan termasuk data yang disajikan dalam bentuk tabel, grafik, bagan, dan gambar yang relevan.
Keterampilan melakukan pengamatan dan mencoba menemukan hubungan-hubungan yang diamati secara sistematis sangatlah penting. Dengan keterampilan ini, kita dapat mengetahui bagaimana mengumpulkan fakta dan menghubungkan fakta-fakta untuk membuat suatu penafsiran atau kesimpulan. Keterampilan ini juga merupakan keterampilan belajar sepanjang hayat yang dapat digunakan bukan saja untuk mempelajari berbagai macam ilmu, tetapi juga dapat digunakan dalam kehidupan sehari-hari.
Objek yang dipelajari dalam IPA meliputi seluruh benda di alam dengan segala interaksinya untuk dipelajari pola-pola keteraturannya. Objek tersebut dapat berupa benda yang sangat kecil, misalnya bakteri, virus, bahkan partikel - partikel penyusun atom. Objek yang diamati bisa juga benda-benda yang berukuran sangat besar, misalnya lautan, bumi, matahari, hingga jagat raya ini.
Perlu Diketahui Pada saat ini,
penyelidikan tentang alam telah menghasilkan kumpulan pengetahuan yang demikian
kompleks. Untuk memudahkan, pengetahuanpengetahuan tersebut digolongkan sebagai
berikut.
- Fisika,
mempelajari tentang aspek mendasar alam, misalnya materi, energi, gaya,
gerak, panas, cahaya, dan berbagai gejala alam fisik lainnya.
- Kimia,
meliputi penyelidikan tentang penyusun dan perubahan zat.
- Biologi,
mempelajari tentang sistem kehidupan mulai dari ukuran renik sampai dengan
lingkungan yang sangat luas.
- Ilmu
Bumi dan Antariksa, mempelajari asal mula bumi, perkembangan dan keadaan
saat ini, bintang-bintang, planet-planet, dan berbagai benda langit
lainnya.
Pengukuran sebagai Bagian dari Pengamatan
Pengamatan objek dengan menggunakan
indra merupakan kegiatan penting untuk menghasilkan deskripsi suatu benda. Akan
tetapi, seringkali pengamatan seperti itu tidak cukup. Kita memerlukan
pengamatan yang memberikan hasil yang pasti ketika dikomunikasikan dengan orang
lain. Sebagai contoh, ketika kita pergi ke penjahit untuk minta dibuatkan baju,
bagaimana penjahit dapat membuatkan baju dengan ukuran yang tepat? Atau, ketika
kita melihat orang berjual beli buah, misalnya duku? Bagaimanakah menentukan
banyaknya duku secara akurat? Semua peristiwa di atas terkait dengan kegiatan
pengukuran.
Mencoba Membuat Alat Ukur Sendiri
Misalkan, kita hendak mengukur panjang
bangku, panjang papan tulis, atau lebar ruang kelas. Namun, kita tidak memiliki
mistar atau alat ukur yang biasanya. Kalau demikian, kita bisa menggunakan
sesuatu yang ada sebagai alat pengukur panjang, misalnya buku, pensil, jengkal
tangan, atau benda-benda lain yang mudah didapatkan. Kemudian ukurlah panjang
bangku atau lebar ruangan kelas dengan menggunakan alat-alat pengukur panjang
yang telah kita tentukan. Catat hasil pengukuran tersebut. Mintalah salah
seorang teman untuk melakukan pengukuran yang sama dengan menggunakan alat-alat
pengukur panjang yang dia tentukan sendiri. Jangan lupa, temanmu juga harus
mencatat hasil dan satuan ukuran yang dibuatnya. Jangan lupa, bandingkan hasil
pengukuran dan hasil pengukuran temanmu! Catat persamaan dan perbedaannya!
Mengukur merupakan kegiatan penting dalam kehidupan dan kegiatan utama di dalam IPA. Contoh, ketika hendak mendeskripsikan suatu benda, misalnya mendeskripsikan diri kita sendiri, kemungkinan besar kita akan menyertakan tinggi badan, umur, berat badan, dan lain-lain. Tinggi badan, umur, dan berat badan merupakan sesuatu yang dapat diukur. Dan segala sesuatu yang dapat diukur disebut besaran.
Mengukur juga merupakan kegiatan membandingkan suatu besaran yang diukur dengan besaran sejenis yang dipakai sebagai satuan. Misalnya, kita melakukan pengukuran panjang meja dengan jengkal. Maka, kita membandingkan panjang meja dengan panjang jengkal. Jengkal dipakai sebagai satuan pengukuran. Sebagai hasilnya, misalnya panjang meja sama dengan 6 jengkal. Nah, misalnya ada 3 teman kita melakukan pengukuran panjang meja yang sama, tetapi dengan jengkal masing-masing. Hasilnya, sebagai berikut:
» Panjang meja = 6 jengkal Andrian.
» Panjang meja = 5,5 jengkal Edo.
» Panjang meja = 7 jengkal Emi.
Mengapa hasil tiga pengukuran itu berbeda? Itu terjadi karena alat ukur yang digunakan merupakan alat ukur dengan satuan tidak baku.
Sekarang bayangkan, apa yang terjadi jika setiap pengukuran di dunia ini menggunakan satuan yang berbeda-beda, misalnya jengkal. Ketika kita memesan baju ke penjahit dengan panjang lengan 3 jengkal, kemungkinan besar hasilnya tidak akan sesuai dengan keinginan karena penjahit itu menggunakan jengkalnya. Oleh karena itu, diperlukan satuan yang disepakati oleh semua orang. Satuan yang disepakati ini disebut satuan baku.
Kita pasti pernah mendengar satuan sentimeter, kilogram, dan detik. Satuan-satuan tersebut adalah contoh satuan baku dalam ukuran Sistem Internasional (SI). Setelah tahun 1700, sekelompok ilmuwan menggunakan sistem ukuran yang dikenal dengan nama Sistem Metrik. Pada tahun 1960, Sistem Metrik dipergunakan dan diresmikan sebagai Sistem Internasional. Penamaan ini berasal dari bahasa Prancis, Le Systeme Internationale d’Unites. Dalam satuan SI, setiap jenis ukuran memiliki satuan dasar, contohnya panjang memiliki satuan dasar meter.
Sistem Internasional lebih mudah digunakan karena disusun berdasarkan kelipatan bilangan 10. Penggunaan awalan di depan satuan dasar SI menunjukkan bilangan 10 berpangkat yang dipilih. Misalnya, awalan kilo berarti 10Pangkat 3 atau 1.000. Maka, 1 kilometer berarti 1.000 meter. Contoh lain, pembangkit listrik menghasilkan daya 500 Mwatt berarti sama dengan 500.000.000 watt. Jadi, penulisan awalan menyederhanakan angka hasil pengukuran sehingga mudah dikomunikasikan ke pihak lain.
Mengukur merupakan kegiatan penting dalam kehidupan dan kegiatan utama di dalam IPA. Contoh, ketika hendak mendeskripsikan suatu benda, misalnya mendeskripsikan diri kita sendiri, kemungkinan besar kita akan menyertakan tinggi badan, umur, berat badan, dan lain-lain. Tinggi badan, umur, dan berat badan merupakan sesuatu yang dapat diukur. Dan segala sesuatu yang dapat diukur disebut besaran.
Mengukur juga merupakan kegiatan membandingkan suatu besaran yang diukur dengan besaran sejenis yang dipakai sebagai satuan. Misalnya, kita melakukan pengukuran panjang meja dengan jengkal. Maka, kita membandingkan panjang meja dengan panjang jengkal. Jengkal dipakai sebagai satuan pengukuran. Sebagai hasilnya, misalnya panjang meja sama dengan 6 jengkal. Nah, misalnya ada 3 teman kita melakukan pengukuran panjang meja yang sama, tetapi dengan jengkal masing-masing. Hasilnya, sebagai berikut:
» Panjang meja = 6 jengkal Andrian.
» Panjang meja = 5,5 jengkal Edo.
» Panjang meja = 7 jengkal Emi.
Mengapa hasil tiga pengukuran itu berbeda? Itu terjadi karena alat ukur yang digunakan merupakan alat ukur dengan satuan tidak baku.
Sekarang bayangkan, apa yang terjadi jika setiap pengukuran di dunia ini menggunakan satuan yang berbeda-beda, misalnya jengkal. Ketika kita memesan baju ke penjahit dengan panjang lengan 3 jengkal, kemungkinan besar hasilnya tidak akan sesuai dengan keinginan karena penjahit itu menggunakan jengkalnya. Oleh karena itu, diperlukan satuan yang disepakati oleh semua orang. Satuan yang disepakati ini disebut satuan baku.
Kita pasti pernah mendengar satuan sentimeter, kilogram, dan detik. Satuan-satuan tersebut adalah contoh satuan baku dalam ukuran Sistem Internasional (SI). Setelah tahun 1700, sekelompok ilmuwan menggunakan sistem ukuran yang dikenal dengan nama Sistem Metrik. Pada tahun 1960, Sistem Metrik dipergunakan dan diresmikan sebagai Sistem Internasional. Penamaan ini berasal dari bahasa Prancis, Le Systeme Internationale d’Unites. Dalam satuan SI, setiap jenis ukuran memiliki satuan dasar, contohnya panjang memiliki satuan dasar meter.
Sistem Internasional lebih mudah digunakan karena disusun berdasarkan kelipatan bilangan 10. Penggunaan awalan di depan satuan dasar SI menunjukkan bilangan 10 berpangkat yang dipilih. Misalnya, awalan kilo berarti 10Pangkat 3 atau 1.000. Maka, 1 kilometer berarti 1.000 meter. Contoh lain, pembangkit listrik menghasilkan daya 500 Mwatt berarti sama dengan 500.000.000 watt. Jadi, penulisan awalan menyederhanakan angka hasil pengukuran sehingga mudah dikomunikasikan ke pihak lain.
Besaran Pokok
a. Panjang
Dalam IPA, panjang menyatakan jarak antara dua titik. Misalnya, panjang papan tulis adalah jarak antara titik pada ujung-ujung papan tulis, panjang bayi yang baru lahir adalah jarak dari ujung kaki sampai ujung kepala bayi itu. Panjang menggunakan satuan dasar SI meter (m). Satu meter standar (baku) sama dengan jarak yang ditempuh cahaya dalam ruang hampa selama 1/299792458 sekon. Untuk keperluan sehari-hari, telah dibuat alat-alat pengukur panjang tiruan dari meter standar, seperti meteran gulung, pita ukur atau metlin, jangka sorong, penggaris, dll. Meteran gulung dan penggaris mampu mengukur paling kecil 1 mm, tetapi jangka sorong mampu mengukur sampai 0,1 mm.
b. Massa
Setiap benda tersusun dari materi. Jumlah materi yang terkandung dalam suatu benda disebut massa benda. Dalam SI, massa diukur dalam satuan kilogram (kg). Misalnya, massa tubuh kita 52 kg, massa seekor kelinci 3 kg, massa sekantong gula 1 kg.
Dalam kehidupan sehari-hari, orang menggunakan istilah “berat” untuk massa. Namun, sesungguhnya massa tidak sama dengan berat. Massa suatu benda ditentukan oleh kandungan materinya dan tidak mengalami perubahan meskipun kedudukannya berubah. Sebaliknya, berat sangat bergantung pada kedudukan di mana benda tersebut berada. Sebagai contoh, saat astronot berada di bulan, beratnya tinggal 1/6 dari berat dia saat di bumi. Dalam SI, massa menggunakan satuan dasar kilogram (kg), sedangkan berat menggunakan satuan newton (N). Satu kilogram standar (baku) sama dengan massa sebuah silinder yang terbuat dari campuran platinum-iridium yang disimpan di Sevres, Paris, Prancis. Massa 1 kg setara dengan 1 liter air pada suhu 4oC.
Massa suatu benda dapat diukur dengan neraca lengan, sedangkan berat diukur dengan neraca pegas. Neraca lengan dan neraca pegas termasuk jenis neraca mekanik. Sekarang banyak digunakan jenis neraca lain yang lebih praktis, yaitu neraca digital. Pada neraca digital, hasil pengukuran massa langsung muncul dalam bentuk angka dan satuannya. Selain kilogram (kg), massa benda juga dinyatakan dalam satuan-satuan lain. Misalnya, gram (g) dan miligram (mg) untuk massa-massa yang kecil; ton (t) dan kuintal (kw) untuk massa-massa yang besar.
» 1 ton = 10 kw = 1.000 kg
» 1 kg = 1.000 g
» 1 g = 1.000 mg
c. Waktu
Waktu adalah selang antara dua kejadian atau dua peristiwa. Misalnya, waktu hidup seseorang dimulai sejak ia dilahirkan hingga meninggal, waktu perjalanan diukur sejak mulai bergerak sampai dengan akhir gerak. Waktu dapat diukur dengan jam tangan atau stopwatch. Satuan SI untuk waktu adalah detik atau sekon (s). Satu sekon standar (baku) adalah waktu yang dibutuhkan atom Cesium untuk bergetar 9.192.631.770 kali. Berdasar jam atom ini, hasil pengukuran waktu dalam selang waktu 300 tahun tidak akan bergeser lebih dari satu sekon. Untuk peristiwa-peristiwa yang selang terjadinya cukup lama, waktu dinyatakan dalam satuan-satuan yang lebih besar, misalnya menit, jam, hari, bulan, tahun, dan abad.
1 hari = 24 jam
1 jam = 60 menit
1 menit = 60 sekon
Untuk kejadian-kejadian yang cepat sekali, dapat digunakan satuan milisekon (ms) dan mikrosekon (µs).
Dalam IPA, panjang menyatakan jarak antara dua titik. Misalnya, panjang papan tulis adalah jarak antara titik pada ujung-ujung papan tulis, panjang bayi yang baru lahir adalah jarak dari ujung kaki sampai ujung kepala bayi itu. Panjang menggunakan satuan dasar SI meter (m). Satu meter standar (baku) sama dengan jarak yang ditempuh cahaya dalam ruang hampa selama 1/299792458 sekon. Untuk keperluan sehari-hari, telah dibuat alat-alat pengukur panjang tiruan dari meter standar, seperti meteran gulung, pita ukur atau metlin, jangka sorong, penggaris, dll. Meteran gulung dan penggaris mampu mengukur paling kecil 1 mm, tetapi jangka sorong mampu mengukur sampai 0,1 mm.
b. Massa
Setiap benda tersusun dari materi. Jumlah materi yang terkandung dalam suatu benda disebut massa benda. Dalam SI, massa diukur dalam satuan kilogram (kg). Misalnya, massa tubuh kita 52 kg, massa seekor kelinci 3 kg, massa sekantong gula 1 kg.
Dalam kehidupan sehari-hari, orang menggunakan istilah “berat” untuk massa. Namun, sesungguhnya massa tidak sama dengan berat. Massa suatu benda ditentukan oleh kandungan materinya dan tidak mengalami perubahan meskipun kedudukannya berubah. Sebaliknya, berat sangat bergantung pada kedudukan di mana benda tersebut berada. Sebagai contoh, saat astronot berada di bulan, beratnya tinggal 1/6 dari berat dia saat di bumi. Dalam SI, massa menggunakan satuan dasar kilogram (kg), sedangkan berat menggunakan satuan newton (N). Satu kilogram standar (baku) sama dengan massa sebuah silinder yang terbuat dari campuran platinum-iridium yang disimpan di Sevres, Paris, Prancis. Massa 1 kg setara dengan 1 liter air pada suhu 4oC.
Massa suatu benda dapat diukur dengan neraca lengan, sedangkan berat diukur dengan neraca pegas. Neraca lengan dan neraca pegas termasuk jenis neraca mekanik. Sekarang banyak digunakan jenis neraca lain yang lebih praktis, yaitu neraca digital. Pada neraca digital, hasil pengukuran massa langsung muncul dalam bentuk angka dan satuannya. Selain kilogram (kg), massa benda juga dinyatakan dalam satuan-satuan lain. Misalnya, gram (g) dan miligram (mg) untuk massa-massa yang kecil; ton (t) dan kuintal (kw) untuk massa-massa yang besar.
» 1 ton = 10 kw = 1.000 kg
» 1 kg = 1.000 g
» 1 g = 1.000 mg
c. Waktu
Waktu adalah selang antara dua kejadian atau dua peristiwa. Misalnya, waktu hidup seseorang dimulai sejak ia dilahirkan hingga meninggal, waktu perjalanan diukur sejak mulai bergerak sampai dengan akhir gerak. Waktu dapat diukur dengan jam tangan atau stopwatch. Satuan SI untuk waktu adalah detik atau sekon (s). Satu sekon standar (baku) adalah waktu yang dibutuhkan atom Cesium untuk bergetar 9.192.631.770 kali. Berdasar jam atom ini, hasil pengukuran waktu dalam selang waktu 300 tahun tidak akan bergeser lebih dari satu sekon. Untuk peristiwa-peristiwa yang selang terjadinya cukup lama, waktu dinyatakan dalam satuan-satuan yang lebih besar, misalnya menit, jam, hari, bulan, tahun, dan abad.
1 hari = 24 jam
1 jam = 60 menit
1 menit = 60 sekon
Untuk kejadian-kejadian yang cepat sekali, dapat digunakan satuan milisekon (ms) dan mikrosekon (µs).
Besaran Turunan
Besaran-besaran yang dapat diukur selain
besaran pokok tergolong sebagai besaran turunan. Misalnya, luas sebuah ruangan.
Jika ruangan tersebut berbentuk persegi, maka luasnya merupakan hasil perkalian
panjang dengan lebar. Perhatikan, bahwa panjang dan lebar merupakan besaran
pokok panjang. Dalam SI, panjang diukur dengan satuan meter (m). Maka, luas
dalam SI memiliki satuan meter x meter , atau meter persegi (m2).
a. Luas
Untuk benda yang berbentuk persegi, luas benda dapat ditentukan dengan mengalikan hasil pengukuran panjang dengan lebarnya.
b. Volume
Misalnya, kita punya dua wadah, yakni kaleng besar dan kaleng kecil. Jika dipergunakan untuk menampung air, kaleng besar pasti dapat menampung air lebih banyak. Hal tersebut terkait dengan besarnya ruangan yang terisi oleh materi, biasanya disebut volume. Jika volume suatu benda lebih besar, benda itu dapat menampung materi lebih banyak dibandingkan benda lain yang volumenya lebih kecil. Volume merupakan besaran turunan yang disusun dari besaran pokok panjang. Volume benda padat yang bentuknya teratur, contohnya balok, dapat ditentukan dengan mengukur terlebih dulu panjang, lebar, dan tingginya, kemudian mengalikannya. Jika kita mengukur panjang, lebar, dan tinggi balok menggunakan satuan sentimeter (cm), maka volume balok yang diperoleh dalam satuan sentimeter kubik (cm3). Jika, panjang, lebar, dan tinggi diukur dalam satuan meter (m), maka volume yang diperoleh bersatuan meter kubik (m3).
Bagaimana cara menentukan volume suatu zat cair? Zat cair tidak memiliki bentuk yang tetap. Bentuk zat cair selalu mengikuti bentuk wadahnya. Oleh karena itu, jika zat cair dituangkan ke dalam gelas ukur, ruang gelas ukur yang terisi zat cair sama dengan volume zat cair tersebut. Volume zat cair dapat dibaca pada skala sesuai ketinggian permukaan zat cair di dalam gelas ukur tersebut. Hasil pembacaan volume air dengan gelas ukur di atas memiliki satuan mL, kependekan dari mililiter. Dalam kehidupan sehari-hari, volume zat cair biasanya dinyatakan dalam satuan mililiter (mL) atau liter (L).
1 L = 1 dm3
1 L = 1.000 mL
1 mL = 1 cm3
c. Konsentrasi Larutan
Misalnya, kita membuat sirop dengan memasukkan gula ke dalam air, kemudian kita cicipi. Jika kurang manis, kita dapat menambahkan gula lagi. Makin banyak gula yang ditambahkan, makin manis rasa larutan itu. Selain rasa manis yang bersifat kualitatif (hasil indra pengecap), adakah besaran yang dapat digunakan untuk menggambarkan banyaknya gula dan air di dalam larutan tersebut? Salah satu besaran yang dapat digunakan adalah konsentrasi larutan (K) . Ada banyak cara untuk merumuskan konsentrasi larutan. Pada contoh larutan tadi, konsentrasi dapat dirumuskan sebagai massa gula (zat terlarut) dibagi dengan volume air (zat pelarut).
d. Laju Pertumbuhan
Besaran panjang dan waktu dapat digunakan untuk menentukan pertumbuhan tanaman. Misalkan, kamu menanam jagung. Pada pengukuran awal, diperoleh tinggi tanamanmu 20 cm. Dalam waktu 10 hari, tingginya menjadi 60 cm. Kamu dapat menentukan laju pertumbuhan jagung itu, yakni Laju Pertumbuhan = Pertambahan Tinggi dibagi Selang Waktu.
Renungan dan Refleksi
Alat-alat ukur yang sudah kita pelajari hanya dapat digunakan untuk mengukur benda berukuran kecil. Kita tahu, betapa besar dan luasnya alam semesta ciptaan Tuhan Yang Maha Esa ini. Benda-benda ciptaan-Nya ada yang berukuran sangat kecil (mikroskopis), tetapi ada juga yang berukuran sangat besar (makroskopis). Sebagai makhluk ciptaan-Nya yang paling sempurna, kita harus mampu menjelajah alam mikroskopis maupun makroskopis. Keterbatasan indra yang dimiliki manusia disempurnakan dengan akal pikiran sehingga manusia mampu menemukan cara mengamati dan mengukur benda-benda yang tidak terlihat dengan mata dan benda-benda yang sangat jauh.
Info Ilmuwan
a. Luas
Untuk benda yang berbentuk persegi, luas benda dapat ditentukan dengan mengalikan hasil pengukuran panjang dengan lebarnya.
b. Volume
Misalnya, kita punya dua wadah, yakni kaleng besar dan kaleng kecil. Jika dipergunakan untuk menampung air, kaleng besar pasti dapat menampung air lebih banyak. Hal tersebut terkait dengan besarnya ruangan yang terisi oleh materi, biasanya disebut volume. Jika volume suatu benda lebih besar, benda itu dapat menampung materi lebih banyak dibandingkan benda lain yang volumenya lebih kecil. Volume merupakan besaran turunan yang disusun dari besaran pokok panjang. Volume benda padat yang bentuknya teratur, contohnya balok, dapat ditentukan dengan mengukur terlebih dulu panjang, lebar, dan tingginya, kemudian mengalikannya. Jika kita mengukur panjang, lebar, dan tinggi balok menggunakan satuan sentimeter (cm), maka volume balok yang diperoleh dalam satuan sentimeter kubik (cm3). Jika, panjang, lebar, dan tinggi diukur dalam satuan meter (m), maka volume yang diperoleh bersatuan meter kubik (m3).
Bagaimana cara menentukan volume suatu zat cair? Zat cair tidak memiliki bentuk yang tetap. Bentuk zat cair selalu mengikuti bentuk wadahnya. Oleh karena itu, jika zat cair dituangkan ke dalam gelas ukur, ruang gelas ukur yang terisi zat cair sama dengan volume zat cair tersebut. Volume zat cair dapat dibaca pada skala sesuai ketinggian permukaan zat cair di dalam gelas ukur tersebut. Hasil pembacaan volume air dengan gelas ukur di atas memiliki satuan mL, kependekan dari mililiter. Dalam kehidupan sehari-hari, volume zat cair biasanya dinyatakan dalam satuan mililiter (mL) atau liter (L).
1 L = 1 dm3
1 L = 1.000 mL
1 mL = 1 cm3
c. Konsentrasi Larutan
Misalnya, kita membuat sirop dengan memasukkan gula ke dalam air, kemudian kita cicipi. Jika kurang manis, kita dapat menambahkan gula lagi. Makin banyak gula yang ditambahkan, makin manis rasa larutan itu. Selain rasa manis yang bersifat kualitatif (hasil indra pengecap), adakah besaran yang dapat digunakan untuk menggambarkan banyaknya gula dan air di dalam larutan tersebut? Salah satu besaran yang dapat digunakan adalah konsentrasi larutan (K) . Ada banyak cara untuk merumuskan konsentrasi larutan. Pada contoh larutan tadi, konsentrasi dapat dirumuskan sebagai massa gula (zat terlarut) dibagi dengan volume air (zat pelarut).
d. Laju Pertumbuhan
Besaran panjang dan waktu dapat digunakan untuk menentukan pertumbuhan tanaman. Misalkan, kamu menanam jagung. Pada pengukuran awal, diperoleh tinggi tanamanmu 20 cm. Dalam waktu 10 hari, tingginya menjadi 60 cm. Kamu dapat menentukan laju pertumbuhan jagung itu, yakni Laju Pertumbuhan = Pertambahan Tinggi dibagi Selang Waktu.
Renungan dan Refleksi
Alat-alat ukur yang sudah kita pelajari hanya dapat digunakan untuk mengukur benda berukuran kecil. Kita tahu, betapa besar dan luasnya alam semesta ciptaan Tuhan Yang Maha Esa ini. Benda-benda ciptaan-Nya ada yang berukuran sangat kecil (mikroskopis), tetapi ada juga yang berukuran sangat besar (makroskopis). Sebagai makhluk ciptaan-Nya yang paling sempurna, kita harus mampu menjelajah alam mikroskopis maupun makroskopis. Keterbatasan indra yang dimiliki manusia disempurnakan dengan akal pikiran sehingga manusia mampu menemukan cara mengamati dan mengukur benda-benda yang tidak terlihat dengan mata dan benda-benda yang sangat jauh.
Info Ilmuwan
Terdapat banyak ilmuwan yang mengembangkan pola-pola pengamatan dalam
mempelajari ilmu pengetahuan alam, di antaranya:
• Robert Grosseteste (1170–1253) adalah perintis teori ilmiah. Ia memperkenalkan metode analisis, penggunaan pengamatan, percobaan, dan penyimpulan dalam membuat evaluasi ilmiah. Grosseteste juga banyak mengacu pada pemikiran Platonis dan Aristotelian.
• Francis Bacon (1560-1626), dikenal sebagai Bapak Ilmu Kealaman mempunyai ajaran bahwa kebenaran harus dengan menggunakan pengumpulan fakta sebanyak-banyaknya, kemudian menarik kesimpulan. Metode induktif pertama kali diterapkan oleh Bacon.
• Galileo Galilei (1564-1642) adalah ilmuwan yang pertama kali memperkenalkan metode pendekatan ilmiah di Eropa. Penemuannya yang terkenal adalah penelitian kembali terhadap teori Coppernicus tentang heliosentrisme dengan menggunakan teleskop dan matematika. Galileo melalui pendekatan saintifiknya berhasil menunjukkan bahwa teori geoentrisme yang dianut orang pada masanya adalah salah dan tidak berdasarkan pada pengamatan ilmiah.
• Penelitian di bidang IPA juga ditunjang hasil penelitian Anthony van Leeuwenhoek (1632-1723) yang menemukan mikroskop.
• Jauh sebelum jaman para ahli tersebut, ada seorang ilmuwan yang bernama Al-Kindi yang lahir pada tahun 796 M. Al-Kindi meneliti banyak objek IPA, dan berhasil menjelaskan secara rinci proses kimia, seperti penyaringan dan penyulingan.
• Robert Grosseteste (1170–1253) adalah perintis teori ilmiah. Ia memperkenalkan metode analisis, penggunaan pengamatan, percobaan, dan penyimpulan dalam membuat evaluasi ilmiah. Grosseteste juga banyak mengacu pada pemikiran Platonis dan Aristotelian.
• Francis Bacon (1560-1626), dikenal sebagai Bapak Ilmu Kealaman mempunyai ajaran bahwa kebenaran harus dengan menggunakan pengumpulan fakta sebanyak-banyaknya, kemudian menarik kesimpulan. Metode induktif pertama kali diterapkan oleh Bacon.
• Galileo Galilei (1564-1642) adalah ilmuwan yang pertama kali memperkenalkan metode pendekatan ilmiah di Eropa. Penemuannya yang terkenal adalah penelitian kembali terhadap teori Coppernicus tentang heliosentrisme dengan menggunakan teleskop dan matematika. Galileo melalui pendekatan saintifiknya berhasil menunjukkan bahwa teori geoentrisme yang dianut orang pada masanya adalah salah dan tidak berdasarkan pada pengamatan ilmiah.
• Penelitian di bidang IPA juga ditunjang hasil penelitian Anthony van Leeuwenhoek (1632-1723) yang menemukan mikroskop.
• Jauh sebelum jaman para ahli tersebut, ada seorang ilmuwan yang bernama Al-Kindi yang lahir pada tahun 796 M. Al-Kindi meneliti banyak objek IPA, dan berhasil menjelaskan secara rinci proses kimia, seperti penyaringan dan penyulingan.
Kesimpulan:
- Penyelidikan ilmiah IPA melibatkan sejumlah
proses, antara lain: mengamati, membuat inferensi, dan mengomunikasikan.
- Pengukuran merupakan bagian dari pengamatan.
- Mengukur : membandingkan besaran dengan besaran
sejenis sebagai satuan; menghasilkan ukuran yang terdiri atas nilai dan
satuan. Mengukur membutuhkan alat ukur. Alat ukur harus sesuai dengan
besaran yang akan di ukur.
- Besaran yang diukur terdiri atas besaran pokok
dan turunan. Satuan besaran pokok didefinisikan, satuan besaran turunan
diturunkan dari besaran pokok. Panjang, massa, waktu, dan suhu termasuk
besaran pokok. Luas, volume, konsentrasi (kepekatan) larutan, serta laju
pertumbuhan termasuk besaran turunan.
Sumber : http://www.ipapedia.web.id/2015/10/objek-ipa-dan-pengamatannya.html
0 komentar:
Posting Komentar